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A B S T R A C T

We investigate the surface spin dynamics and magnonic characteristics of a magnetically ordered fcc Fe-Ni alloy
monolayer on a Ni magnetic slab substrate. The calculations are performed using the Heisenberg Hamiltonian
representation for the magnetic ground state of the system. Using the Spin Polarized Relativistic Korringa-Kohn-
Rostoker (SPRKKR) method, the relevant magnetic exchange parameters are computed, taking into account the
nearest and next nearest Fe-Fe interactions. This establishes the appropriate Heisenberg Hamiltonian. The Phase
Field Matching Theory (PFMT) is applied to compute the spin dynamics and surface magnonics of the system,
and thus determine the spin wave eigenmodes localized at the surface but propagating in its plane with surface
group velocities; these intrinsic eigenmodes constitute basic elements for the magnonic characteristics of the
system. The inclusion of the Fe-Fe interactions alters the highest magnonic mode compared to the case when
such interactions are absent. The localized densities of states (LDOS) for the irreducible representative magnetic
sites at the surface nanostructure are extracted from our computed PFMT Green’s functions. The model is
general, and can be applied to different ultrathin layered magnetic alloys on magnetically ordered substrates.

1. Introduction

Motivated by the endeavor to produce magnetic field controlled
devices by using spin waves (instead of electrons) to carry and process
information, the field of magnonics is born [1]. This new field aims at
studying, detecting and manipulating spin waves in magnetic materials.
It is superior to the field of electronics in the sense that it does not use
electric currents, thus avoiding significant Joule heating effects which
limit the efficiency, capacity and lifetime of electronic devices. Ad-
ditionally, it is different from the field of spintronics[2], which although
makes use of just the spin moment of the electric charge, is still destined
to depend on itinerant electrons. Techniques in this field can be applied
to boost the performance of physical devices[3,4]. The study of spin
dynamics constitutes the basic first step for the production of magnonic
devices. This is achieved through the investigation of the propagation of
spin waves inside magnetic materials which allows the observation of
new magnetic phenomena in the systems under study [5–8].

Experimentally, early investigations in magnonics started with fer-
rites [9] on the millimetre to micrometre [10,11] time scales. Wave-
based data processing by spin waves proved to be an optimistic

approach to conquer the challenges which CMOS based logic networks
are facing; in fact it is now possible to combine and separate spin waves
of various frequencies to process simultaneous data in single magnonic
devices [12]. On the nano scale level, engineered spin-textures were
used as building blocks of spin-wave based computing devices [13];
however the experimental attempts to emit, manipulate and detect spin
waves are accessible at only a few hundreds of nanometres [14] where
the detection of those occurring at the lower end of the nano scale is
still limited and remains a main challenge.

Magnetic nanomaterials belong to the general class of materials that
are vital in various areas such as medicine [15,16], and catalysis [17].
In magnetic tunnel junction (MTJ) technology, magnetic nanomaterials
made from transition metals (TM), such as Fe, Ni and Co, can be con-
structed to modulate the spintronics properties of ultrathin junctions
containing bimetallic nanolayers [18]. Also, magnetic ultrathin nano-
junctions consisting of a few TM atomic monolayers, are significantly
interesting for modulating magnonics phase fields. Recently, the study
of homogeneous magnetically ordered TM alloy nanostructures was
initiated by constructing the ground states of Fe-Co alloy nanojunctions,
[Gd Co ]c c n1 nanojunctions with Co leads, as well as the computation of
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the site magnetizations in the n-layered alloy for diverse concentrations
c [19–21].

By evaluating the reflectance and transmittance fields of the in-
cident lead spinwaves, the corresponding coherent ballistic transport
across TM nanojunctions, whose dimensions are relatively smaller than
the spinwave wavelength, can also be examined. This has been suc-
cessfully explored for the Fe-Co alloy nanojunctions with Fe leads [21],
Gd-Co alloy nanojunctions with Co leads [22], Fe-Ni alloy nanojunc-
tions with Fe and Co leads [23], and ultrathin lamellar bcc Ni mono-
layers of different thicknesses between Fe leads [24]. The exchange
constants for the above calculations were obtained for nearest neigh-
bours using the Effective Field Theory (EFT) [25] and the virtual crystal
approximation (VCA) [26–29]. The computations of the spin dynamics
in these systems, based on a Heisenberg Hamiltonian, are acquired by
employing the Phase Field Matching Theory (PFMT) [21–24] based on
the appropriate phase matching of the spinwave Bloch states of the
leads to the localized spin dynamic states in the nanojunction scattering
region.

For advanced magnonic technologies, an important type of mag-
netic nanomaterial consists of ultrathin magnetic films (of a few alloy
monolayers). In complex magnonic circuitry, it is often used as mag-
netic modulable and controllable surface systems on slab substrates or
nanojunction systems between magnetic leads, especially those using
Fe, Ni and Co.

An earlier interest in spin-injection into a semiconductor-based
device has motivated the study of the structural and magnetic proper-
ties of a few atomic monolayers Ni/Fe and Fe/Ni epitaxially grown on
GaAs [30]. It was shown that a proper choice of Fe and Ni sequences
(Fe/Ni/GaAs) and their thickness of up to three atomic monolayers,
induced the rotation of magnetization from the in-plane to the out-of-
plane direction, thanks to the change of the effective anisotropy of the
monolayers. This change was found for a series of ultrathin Fe films of a
few monolayers grown on Ni films with constant thickness on top of Si
substrates [31]. Currently, the study of ultrathin alloy Fe-Ni monolayers
on different substrates, [32–34], is of interest.

Furthermore, some theoretical research work has also been done on
the magnetic properties of ultrathin fcc Fe nanostructures on Cu(111)
surfaces using ab initio techniques [35], and of an Fe x1 Nix monolayer
on Cu(001) substrate using the spin-polarized linear muffin-tin orbitals
Green’s-function technique and the Korringa-Kohn-Rostoker Green’s
function method [36]. The magnetic properties of ultrathin TM films on
4d substrates have also been extensively considered in [37].

In this paper, we investigate in depth the magnetic ground state and
the spin dynamics of the system of a monolayer of fcc Fe0.5Ni0.5 alloy as
the topmost surface monolayer on an fcc Ni slab substrate of sub-
microscopic width much greater than the width of an atomic mono-
layer. Our choice comes from the fact that the system is important in
magnonics from a technological point of view; furthermore it is a stable
system since the ordered Fe0.5Ni0.5 fcc structure has, according to DFT
calculations, the lowest energy of all the alloy configurations with the
same stoichiometry [38–40]. Nonetheless, its spin dynamics have not
been addressed before. Here, we use DFT techniques to determine the
various exchange parameters, and the Phase Field Matching Theory
(PFMT) to compute the spin dynamics and the localized magnonic
modes at the surface. Our theoretical model which applies to the pre-
sent system, can be extended directly to an ultrathin nanometric film of
a few alloy monolayers at the surface. Varying the surface film thick-
ness can modulate and control the number and behavior of surface
localized eigenmodes which are basic elements for the magnonic
properties of such nanostructures.

The paper is organized as follows: In Section 2, The magnetic
ground state of the system is constructed adopting the Heisenberg re-
presentation, and ab initio computations are developed to compute the
nearest and next nearest neighbor magnetic exchange between the
different Ni and Fe sites of the system, using the Spin Polarized Re-
lativistic Korringa-Kohn-Rostoker (SPKKR) technique. In Section 3, the

theoretical model is established in detail using the Phase Field Matching
Theory (PFMT) to obtain the spin dynamics of the system, and compute
the spin waves, notably the localized eigenmodes at the surface alloy
monolayer which are basic to characterize the system magnonic prop-
erties. Theoretical and numerical results, followed by a discussion, are
presented in Section 4 and the conclusions are given in Section 5.

2. DFT computations of the system’s magnetic order and exchange
parameters

The structure of the magnetically ordered monolayer alloy on the Ni
substrate (which is the configuration shown in Fig. 1) is constructed as a
2D fcc slab of 40 atoms cut along the [001] direction using the XBAND
graphical interface implemented in the Spin Polarized Relativistic
Korringa-Kohn-Rostoker (SPRKKR) code [41,42]. The first three layers
are of Ni whilst the fourth layer represents the Fe0.5Ni0.5 alloy. The slab
has an orthorhombic primitive structure and thus belongs to the Pmmm
space group. The lattice parameter is chosen to be that of fcc Ni
(aNi = 3.49 Å).

The first step towards obtaining the magnetic exchange constants
(J) is a self consistent potential calculation (SCF). Since TM elements
are involved, the angular momenta expansion for the major component
of the wave function lmax was set to 3. During the SCF cycles, a Brillouin
zone (BZ) integration with a special point method was used with a grid
of 400 k-points. To achieve convergence, we have used a BROYDEN2
scheme [43] with a scalar relativistic Vosko-Wilk-Nusair (VWN) ex-
change correlation potential [44]. The Ewald parameter which de-
termines the relative weight of the real and reciprocal space lattice
sums is set to 0.3, and both the cutoff radii in real and reciprocal spaces
are restricted to a value of 3.3. The weakly bound states are treated as
core states, and the upper end of the energy path Emax is set to the Fermi
energy EF . Regarding the real part of the lowest energy value we have
used Emin = 0.2 Ry, and the number of E mesh points was set to 30.
Since slab calculations are usually slow, the SCF mixing parameter was
set to 0.07 to accelerate the convergence with a maximum number of
SCF iterations of 300. If desired, the new converged self consistent
potential can then be used to compute the total (TDOS) and partial
(PDOS) density of states of each Ni/Fe site using a denser grid of 850k-
points and a higher E mesh points of 50.

The SPRKKR package calculates the magnetic exchange constants J
for the Heisenberg Hamiltonian of the system:

= J S S. ,
i j

ij i j
,

H

where Si and Sj represent the spins at sites i and j and Jij are the

Fig. 1. Schematic representation of the magnetically ordered fcc monolayer
Fe0.5Ni0.5 alloy on an fcc Ni substrate. The brown balls represent Fe sites in the
alloy denoted by A and A’. The green balls identify Ni sites, labeled B in the
alloy monolayer. As one goes deeper into the subsrate, Ni sites C, D and E are
encountered.
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exchange constants between the different sites. The calculations are
based on the KKR Green’s functions following the formulation of
Liechtenstein et al. [45]. The exchange constants are calculated with
respect to a referential central site i of a cluster of atoms with the radius
Rclus = maxR| i-R R|,j i and Rj being the positions of sites i and j respec-
tively. We have taken between 0 and 1.0 to include nearest and next
nearest neighbours. For completeness, the computations are undertaken
using different referential sites.

The nearest neighbour exchange interactions between Fe and Ni
atoms in the two topmost monolayers at the surface, between Ni atoms
in the alloy monolayer and Ni atoms in the slab substrate, and between
Ni atoms within the substrate are computed within a DFT framework.
Given their importance, the Fe-Fe next nearest neighbour interactions
in the surface alloy monolayer will be also determined. On the other
hand, the Ni-Ni next nearest neighbour interactions within the alloy
plane are small and will therefore be neglected. With the exchange
constants at hand, the overall Heisenberg Hamiltonian is then estab-
lished to predict the system’s spin dynamics.

3. Theoretical model for the system’s magnonic characteristics

3.1. Computation of the substrate and surface magnon modes

The ordered alloy monolayer is built up by substituting an Fe atom
for every other Ni atom in the topmost original surface Ni monolayer.
Note that the surface breaks the symmetry along the z-direction which,
in our case, is perpendicular to the whole system.

It is instructive at first to analyze the magnonic properties of the
bulk fcc Ni as a reference. This is well known, and leads to a single
propagating spin wave (SW) mode over the fcc crystallographic struc-
ture; the bulk magnon dispersion can be written as

= + +( , , ) 12 4(cos( )cos( ) cos( )cos( ) cos( )cos( )),x y z y z x y x z

where ,x y and z are normalized dimensionless phases that run over
the fcc first Brillouin zone (BZ). ( , , )x y z is a dimensionless nor-
malized energy parameter given by J S/( V Ni), where JV represents the
magnetic exchange constant between two nearest neighbour Ni sites in
the bulk region, and SNi is the spin per Ni site. Fig. 2(a) shows the
magnonic dispersion curves for bulk fcc Ni corresponding to = = 0y x
and to = =/2, 0y x for z . In the first case, the propa-
gating SWs occur for 0 16, while for the second case they occur for
8 16. The group velocities of the SW mode along the two different
BZ paths are shown in Fig. 2(b).

Generally, the equation of the precessional motion of a spin vector U
on an fcc site with coordinates n s, and m can be written as

=
+ + +
+ + +

+ + +
+

+
+

U n s m U n s m U n s m
U n s m U n s m
U n s m U n s m
U n s m U n s m
U n s m U n s m
U n s m U n s m
U n s m

( , , ) 12 ( , , ) ( 1, 1, )
( 1, 1, ) ( 1, 1, )
( 1, , 1) ( , 1, 1)
( 1, , 1) ( , 1, 1)
( , 1, 1) ( 1, , 1)
( 1, , 1) ( , 1, 1)
( 1, 1, ),

Ni Ni Ni

Ni Ni

Ni Ni

Ni Ni

Ni Ni

Ni Ni

Ni (1)

with ± = ± =± ±U n s m U n s m e U n s m U n s m e( 1, , ) ( , , ) , ( , 1, ) ( , , )Ni Ni i x Ni Ni
i y

and ± = ±U n s m U n s m e( , , 1) ( , , )Ni Ni
i z, { ± ±e e,i ix y and ±e i z} being the

corresponding phase factors.
As can be inferred from Fig. 1, A and B belong to the ordered alloy

monolayer, C to the first Ni atomic plane in contact with the alloy, D to
the so called matching region and E to the bulk region.

The spin dynamics of our system is obtained by resolving the spin
precession equations of motion of the spin vectors situated on the re-
presentative sites A, B, C, D and E. Using Eq. (1), the nearest and next
nearest neighbour interactions for site A yield:

+ + +
+ + + +
+ + + =

J J J J U
J J e e e e U
J J e e U

[ 8 ( 4 2cos(2 ) 2cos(2 ))]
(1 )
(1 2 cos( )) 0.

x y A
i i i i

B
i i

y C

1 2 2 4

1 2
2 2 2 2

1 2
2

x y x y

x x

For site B, only the eight nearest neighbors are considered, giving:

+
+ + + +
+ + + =

J J U
J e e e e U
J e e U

[ 4( )]
(1 )
(1 2 cos( )) 0.

B
i i i i

A
i i

x C

1 3

1
2 2 2 2

3
2

x y x y

y y

Fig. 2. (a) Dispersion curves representing spin wave (SW) bands generated by
the single mode of bulk Ni along two arbitrary directions in the Brillouin zone,
( = = = =0, /2, 0y x y x ) with z . = J S/( )V Ni is a di-
mensionless frequency normalized with respect to the exchange and spin va-
lues. (b) Group velocity of the single propagating mode of fcc bulk Ni along the
two paths depicted in (a).
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The 12 nearest neighbours for site C yield:

+ + + +
+ + + =

J J U
J e U J e U
J e e U

[ 2 (10 4cos( )cos( ))]
(1 ) (1 )
(1 2 cos( )) 0.

x y C
i
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x D
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2

3
2

3
2

x y

y y

For site D, the equation for the 12 nearest neighbours reads:

+ + +
+ + + =

J U
J e e U
J e e U

[ (12 4cos( )cos( ))]
(1 2 cos( ))
(1 2 cos( )) 0.

x y D
i i

x C
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x E

3

3
2
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2
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Finally, for the Ni site E, 12 nearest neighbours are also involved and
the equation takes the form:

+
+ + +
+ + + =

J J U
J e e U

e e U

[ 8 4 4 cos( )cos( ))]
(1 2 cos( ))

(1 2 cos( ))) 0.

x y E
i i

x D
i i

x F

3 3

3
2

2

y y

y y

U U U U, , ,A B C D andUE are spin precession amplitudes at sites A, B, C, D
and E respectively. Theoretically, since the Ni substrate bulk can be
assumed semi-infinite, one of the nearest neighbors of the Ni atom on
site E, will be on a layer beneath (not shown in the figure), and will be
called site F; its spin precession amplitude will be denoted by UF .

For algebraic convenience, we define = /(JV SNi),
J1 = JFeNi/J J,V 2 = SFe/S J,Ni 3 = JNiNi/JV and J4 = JFeFe/JV , where SFe and
SNi are the spins at Fe and Ni sites respectively.

The above system of equations forms a rectangular 5 × 6 dynamical
matrix (MD) which is not possible to diagonalize. Therefore it is in-
structive to define a 6 × 5 matching matrix . The role of this matrix is to
establish the relationships that make it possible to connect the spin
displacements belonging to the surface area (layers containing A, A’ and
B) and those of the evanescent modes of the perfect waveguide (layers
containing Ni atoms at sites E and F).

To determine MR, we have to define a Hilbert space with a basis
>R{| }, used to study the precessional motion of the spins in the

matching region (layers containing atoms C and D). For a site belonging
to the matching region in our Fe0.5Ni0.5/Ni(100) system, the precession
amplitudes can be written as

=U n s m Z w R( , , ) ( , ) ,m

(2)

where R is a unitary vector characterizing the evanescent waves, in
basis >R{| }; represents one of the three directions x y, or z, and the
atomic sites in the matching region. w ( , ) are weighted coefficients
associated with different evanescent modes and Z are phase factors for
the Ni (100) surfaces satisfying the evanescence condition along the z
direction into the slab substrate, normal to the alloy surface.

If we denote by >U| the spin precession vector of sites in the surface
region, then it can be written as a block matrix comprising two parts:
the irreducible part ( >Irr| ) and the matching part ( >Mat| ) which are
matrices of dimensions 4 × 1 and 2 × 1 respectively where the former
consists of displacements of sites forming the surface region (sites A, B,
C and D). In a matrix form, MR can be defined through

> = >
> = >

> = >
>U Irr

Mat

Id
R
R

Irr
R M Irr

R| |
|

0
0
0

. |
| . |

| .R1

2

Id is a 4 × 4 identity matrix, and R1 and R2 define 1 × 1 square ma-
trices (coefficients) which depend on the number of propagating modes
of the perfect slab substrate regions. As a result, MR is identified as:

=M
R
R

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0
0 0 0 0

.R

1

2

The product of the MD and MR matrices form a square 5 × 5 matrix MS.
The localized states induced by the ordered FeNi alloy monolayer can
be accessed by setting det[MS(5× 5)]=0. More details on how to form
the matrix MS can be found in various previous publications
[29,22,46–49].

3.2. Computation of the surface magnonic local densities of states (LDOS)

In the Ni substrate the density of states (DOS) per site is strictly the
same over all sites. In contrast, the magnetic sites at the surface of the
present system have different atomic environments, and they hence
present different local densities of states (LDOS) as a function of the
sites. In this work, the most direct way to calculate the magnonic
(LDOS) in the vicinity of the Fe50 Ni50/ Ni(100) alloy surface, is through
a formalism based essentially on the Green’s functions and the PFMT
matching technique. The Green operator G, obtained from the square
matrix (MS) of the system, can be expressed in the following form
[47–50]

+ = +G i i I M Z J( , , ) [( ) ( , , , )] ,x y S x y i
1 (3)

where is the normalized frequency, is a tiny imaginary part added
to avoid divergences in the calculations, and ( x and y) are the phase
factors along the x and y directions within the Brillouin zone in the
range [- , ]. Z is the previously defined phase factor and Ji are the
system’s exchange constants.

The spectral density matrix for a wave vector on the alloy surface, is
given by the following relation

=

= +
+

Z J C C

ImG J i

( , , , , ) ( )

lim [ ( , , , )].

l l
x y i

m
m

l
m

l
m

ll
x y i

( , )
( , )

, ,

0 (4)

In Eq. (4), l and l represent two different spins on the atomic layers in
the vicinity of the alloy surface, where and = x,y,z directions. C m

l
,

is the component of the spin precession vector l for the magnonic en-
ergy branch ImG,m

ll is the imaginary part of the corresponding
Green’s function obtained from Eq. (3) and is the well known Dirac
delta function.

The bulk density of states (DOS) is evaluated as the sum over all
wave vector values corresponding to phase factors x and y at an en-
ergy =E and is given by

=

= +
+

D Z J

ImG J i

( ) ( , , , , )

lim [ ( , , , )].

l

l l
x y i

l

ll
x y i

,
( , )
( , )

1

, , 0

x y

x y (5)

On the other hand, the local density of states (LDOS) on a given site l
belonging to an atomic layer near the alloy surface can then be com-
puted as

=

= +
+

D Z J

ImG J i

( ) ( , , , , )

lim [ ( , , , )].

l
l l

x y i

ll
x y i

,
( , )
( , )

1

, 0

x y

x y (6)

4. Results and discussions

The exchange constants of the spin dynamic equations, DFT com-
puted in Section 2, have the values: JFeNi = 8.73 meV, JNiNi = 1.74 meV
for the nearest neighbours at the surface mnonlayer, JV = 7.21 meV for
Ni-Ni interactions in the bulk, and JFeFe = 6.82 meV for next nearest Fe-
Fe neighbours. This implies that the ratios J1 = 1.21, J2 = 1, J3 = 0.24,
J4 = 0.95 and the spins are SFe = SNi = 1. Substituting these values in
the above set of five equations to form the corresponding square matrix
MS and solving for the modes, we obtain the magnon dispersion curves
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of Fig. 3.
To emphasize the importance of the DFT computations regarding

the magnetic ground state of the system of a monolayer of fcc Fe0.5Ni0.5
alloy at the surface of an fcc Ni substrate, we present for comparison in
Fig. 3a) and Fig. 3(b) the structures of the dispersion of the surface
localized magnon modes when next nearest neighbour Fe-Fe interac-
tions are absent and present, respectively. The shaded area in the
graphs represents the projection of the bulk fcc Ni magnon bands
propagating along the y-direction.

In the absence of the Fe-Fe interactions, there are two branches of
localized spin wave modes within [0 3.69] and [1.53 4.35] intervals
of . The third and fourth localized dispersion modes belong to the
intermediate ranges [4.74 5.82] and [5.32 6.90] whilst the highest
energy dispersion mode lies within [10.29 12.96]. Taking the Fe-Fe
interactions into account, the only significant change occurs for the
highest energy mode, which now propagates within a larger range
within [12.93 14.18]. A smaller change occurs for one of the lowest
magnonic modes namely [1.53 4.35], which now has a slightly larger
window of propagation in the range [1.53 4.85].

The local density of states (LDOS), which in principle is a measur-
able quantity, incorporates the specific contributions from the localized
spin-wave modes and the resonances, on sites A, B, C and D of the
system as shown in Fig. 4. These are in arbitrary units and are de-
monstrated as a function of the normalized frequency taking into
account the realistic Fe-Fe interactions. These results reveal that for
sites of type A, most of the contributions come from the 0 6

range with a unique high frequency contribution with the largest LDOS
peak occuring at ~ 14.01. Restrictively, only the low frequency range
(0 6) contribute to the sites referred to as B, C and D with largest
peaks taking place at ~ 6.00, ~ 4.53 and 2.76 respectively. Due to
symmetry, we expect that the resonant maximum frequency for site E
would be the same as that for site D.

5. Conclusions

In this work, we have developed a robust theoretical model to in-
vestigate and establish the magnonic characteristics of the system of an
ordered magnetic alloy monolayer Fe0.5Ni0.5 on Ni(100) slab substrates.
Our results can be useful for ongoing research in magnonics and spin-
tronics. The model consists of two complementary parts; the first is the
DFT computations of the magnetic order and the exchange network
between Ni and Fe irreducible representative sites at the surface na-
nostructure and in the bulk substrate; the second applies the PFMT
method, both analytically and numerically, to compute the spin dy-
namics and establish the magnonic characteristics of the system.

The Fe-Fe next nearest neighbour exchange interactions within the
surface alloy monolayer are essential for a realistic understanding of the
magnonic characteristics of the system. When such interactions are
considered, the highest mode propagates within a higher energy range
and the propagation range of atoms within the matching region un-
dergoes a marginal increase of around 0.5. The local densities of states
(LDOS) have also been analyzed showing the resonant magnonic

Fig. 3. (Left) No next nearest neighbour Fe-Fe magnetic exchange interactions in the surface alloy monolayer and (Right) With next nearest neighbour Fe-Fe
magnetic exchange interactions. The black curves indicate dispersion branches, in the Brillouin zone, of the localized magnons at the surface of the system of an Fe0.5
Ni0.5 alloy monolayer on Ni(100) substrates. These spin wave (magnon) eigenmodes propagate along the x- and y-directions, but are evanescent into the slab. The
shaded regions represent the projected magnon bands of bulk Ni.

Fig. 4. Local density of states (LDOS), in
arbitrary units, as a function of the nor-
malized frequency for Fe and Ni on the
alloy (sites A and B) as well as for Ni sites
belonging to the substrate layers (sites C and
D). The Fe-Fe interactions are taken into
consideration.
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energies for the different representative sites constituting the system.
Exploring the effects of piling two or more magnetically ordered alloy
monolayers, whether Fe0.5Ni0.5 or other alloys onto the Ni slab sub-
strate, might cause more interesting changes to the magnonic disper-
sion branches; this will be the goal of a future work under preparation.
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