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a b s t r a c t

In this work, it is reported an investigation of the phonon spectrum of polycrystalline models of gra-
phene, using ab-initio calculations of the phonon dispersion and phonon modes of these systems. Four
different models of polycrystalline graphene are considered: one where the lattices of adjacent grains
have a relative translation between them, with a translational grain boundary connecting the grains, and
three models where the lattices of adjacent grains are tilted relative to each other, with tilt grain
boundaries connecting adjacent grains. It is found that tilt grain boundaries introduce high-frequency
non-dispersive phonon modes in the phonon spectrum of polycrystalline graphene, and that these
modes are strongly localized in the core of the grain boundaries, while no such high-frequency localized
modes are found in the case of the translational boundary system. By computing phonon group velocities
and specific heats of each system in our study, and by analyzing in detail the patterns of atomic dis-
placements of these localized modes, a consistent interpretation is provided for the experimentally
observed trends of the lattice thermal conductivity of polycrystalline graphene samples, as a function of
the grain-boundary tilt angle.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Starting with the isolation and identification of single-layer and
few-layer graphene - the sp2-bonded two-dimensional (2D) form of
carbonwith remarkable electronic and mechanical properties - the
Physics of 2D materials has become one of the central topics of
research in Condensed Matter and Nanoscale Physics in the 21st
century [1e5]. Graphene is a null-gap semiconductor, with a van-
ishing density of states at the Fermi level. The 2D honeycomb
structure of graphene is composed of two sublattices, and its
electronic bands are linear and isotropic within �1eV from the
Fermi level. These features imply that charge carriers in this ma-
terial effectively behave as massless chiral relativistic particles
described by Dirac's equation [3,5]. After thirteen years of the
graphene breakthrough, scientific interest in graphene is still
growing, and the material continues to play a major role in the area
of Nanoscale and 2D Physics.

In 2D, properties of materials can be heavily affected by struc-
tural irregularities. Graphene edges and point defects, such as
es).
vacancies and topological defects, have been thoroughly investi-
gated over the past few years [6,8e11,40]. Of equal importance,
from both fundamental science and applications points of view, is
the effect of disorder associated with grain boundaries (GB) in
polycrystalline systems. These are extended defects characterized
by a topological invariant (the Burgers vector) and by the misori-
entation angle between adjacent grains in a polycrystalline solid
[12e14]. They play an important role in controlling the electric and
mechanical properties of the polycrystalline system, and generally
have different atomic configurations and local atomic densities
than the perfect crystal, acting as scattering centers for both elec-
trons and phonons, and as sinks for impurity atoms which tend to
segregate to the boundaries [15].

In graphene, GBs are usually produced when the material is
grown by deposition methods, such as chemical vapor deposition
[16], and commonly occur in graphitic materials, such as graphite
[17,18], soot [19,20], fullerenes [21], and carbon nanotubes [22]. In
the giant fullerenes considered in Ref. 21, a line of fivefold and
sevefold rings, with similar morphology to the GB we consider,
closes in itself and spans the diameter of the fullerene. In the case of
carbon nanotubes in Ref. 22, extended lines of 5 and 7 rings along
the nanotube axis and around the diameter of the tube have been
considered theoretically. Besides their usual role in electronic and



Fig. 1. Geometries of one-dimensional periodic grain boundaries in graphene. Lattice
vectors of the left grain ( a!

0

1, a
!0

2) and of the right grain ( a!1, a
!

2) are shown as red
arrows. The vector representing the period of the GB ( T

!
GB) is also shown in red. The

GBs are labelled by GBðnL;mLÞjðnR;mRÞ where T
!

GB ¼ nL a
!0

1 þ mL a
!0

2 ¼ nR a!1 þ mR a!2.
(a) Translational grain boundary: GB(2,0)j(2,0). Tilt grain boundaries: (b) GB(2,1)j(1,2);
(c) GB(3,2)j(2,3); and (d) GB(4,3)j(3,4). The red rectangles delineate the supercell
employed in the calculations, in each case. The inset in (d) shows the irreducible
Brillouin zone for the supercells in (a)e(d), with high-symmetry k

!
-points indicated. (A

colour version of this figure can be viewed online.)
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thermal transport in polycrystalline samples, scientific interest in
graphene grain boundaries has also been motivated by some un-
usual properties they display, such as bimodal phonon scattering
behaviour [23], anomalous strength characteristics [24], and strong
chemical sensitivity to adsorbed gas molecules [25], to name a few.

Several atomic-resolution experimental measurements of GB
structures in free-standing graphene [26e31], as well as theoretical
studies, have been performed on polycrystalline-graphene samples
[14,24,32e44]. Among the first experimental results is the scanning
tunneling microscopy studies of tilt GBs on graphite surfaces [45].
More recently, it has been shown that grain boundary defects have
a dramatic influence on the local electronic properties of graphite
[17,18]. On the theoretical side, studies of the impact of GBs on the
phonon spectrum and on the scattering of electronic excitations
and phonons in graphene have been performed [23,46e48], but
these are mostly restricted to molecular dynamics studies, usually
based on interatomic potentials.

The focus of the present paper is to investigate the phonon
spectrum of polycrystalline models of graphene (poly-Gr), by
means of ab-initio calculations of the phonon dispersion and of the
associated phonon modes in these materials, a task that, to the best
of our knowledge, has not been tackled before. We consider four
different models of polycrystalline graphene: one where the lat-
tices of adjacent grains have a relative translation between them,
with a translational grain boundary connecting the grains, and
three other models where the lattices of adjacent grains are tilted
relative to each other, with tilt grain boundaries connecting the
grains. Each of these systems is characterized by the morphology of
the grain boundary between adjacent grains.

We find that tilt grain boundaries introduce non-dispersive
high-frequency phonon modes in the phonon spectrum of poly-
crystalline graphene that are strongly localized in the core of the
grain boundaries, while no such localized modes are found in the
case of the translational boundary model. By analysing in detail the
patterns of atomic displacements of these localized modes, we are
able to provide a consistent picture of the experimentally observed
trends of the thermal conductivity of polycrystalline graphene
samples as a function of the tilt (or misorientation) angle between
adjacent grains.

The paper is organized as follows: In section 2, a summary of the
four polycrystalline models is provided, with a description of the
geometry of the GB in each case, as well as the computational de-
tails of the methods used to perform the various electronic and
phononic calculations. In section 3, we include results for the
phonon spectrum and the phonon density of states (PhDOS) of each
system. Section 3 also includes results for properties such as the
specific heat capacity at constant volume cv, and the phonon group
velocities for the poly-Gr systems, compared to those of pristine
graphene, as well as a discussion of the impact of the GB mor-
phologies on the thermal conductivity of each system in our study,
compared to reported experimental results for this property.
Summary and conclusions are included in Section 4.

2. Methodology and grain-boundary geometries

The translational grain boundary commonly known as 558
defect [14,31,49e54] is shown in Fig. 1 (a) and the three tilt GB
models, based on the experimental images in Ref. 30, are shown in
Fig. 1(b)-(d). In Fig. 1, the larger red arrow shows the GB translation
vector T

!
GB (representing the smallest translation that leaves the

GB structure invariant), and the smaller red arrows show the lattice
vectors of the grains on the left ( a!

0

1; a
!0

2) and on the right ( a!1; a
!

2)
of the GB. By noting that T

!
GB ¼ nL a

!0

1 þ mL a
!0

2 ¼ nR a
!

1 þ mR a
!

2,
we denote the GBs in Fig. 1 as GB ðnL;mLÞjðnR;mRÞ [49]. In this
notation, Fig. 1(a) shows the GB(2,0)j(2,0) translational grain
boundary (the 558 extended defect), and Fig. 1(b)-(d) show the tilt
GBs: GB(2,1)j(1,2), GB(3,2)j(2,3), and GB(4,3)j(3,4), respectively. The
inset in Fig. 1(d) shows a schematic representation of the irreduc-
ible Brillouin zone (IBZ) for the four supercells in Fig. 1, with the
four special k

!
-points indicated.

The GB(2,0)j(2,0) boundary in Fig. 1(a) is formed by cutting a
graphene monolayer along the zigzag direction, and displacing one
side of the monolayer by a nearest-neighbor distance with respect
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to the other side, along an armachir direction. Carbon dimers are
then inserted in the seam between the two sides of the layer. Note
that the lattices on both sides of the defect have the same orien-
tation, i.e., no tilt is involved in this case.

The model adopted to build the three tilt GB structures relies on
the fact that in graphene, these defects consist, in most cases, of
periodic structures composed of a regular succession of pentagon-
heptagonpairs. In the tilt GB geometries, the tilt angle a depends on
the number of lines of hexagonal rings separating the fivefold-
sevenfold units along the period of the defect, as described in
Ref. 55. We obtain a ¼ 21.8+ for the GB(2,1)j(1,2) (with one line of
hexagons separating the 5e7 pairs), a ¼ 13.3+ for the GB(3,2)j(2,3)
(three lines of hexagons), and a ¼ 9.6+ for the GB(4,3)j(3,4) (five
lines of hexagons), while a ¼ 0+ for the GB(2,0)j(2,0).

In the case of tilt GBs, periodicity requires that the supercells in
question contain two GBs with opposite Burgers vectors (a GB and
the corresponding “anti-GB”), such that the total Burgers vector of
the simulation cell vanishes. In the case of the GB(2,0)j(2,0), only
one defect line is included in the simulation cell. We consider
supercells consisting of 42 atoms for the GB(2,0)j(2,0), 60 atoms for
the GB(2,1)j(1,2), 120 atoms for the GB(3,2)j(2,3), and 168 atoms for
the GB(4,3)j(3,4). The parameters of the supercells (number of
atoms Na and defect-defect distances d), the GB parameters (period
of the defect TGB and tilt angle a) as well as the formation energies
(Ef ) are included in Table 1. Our results in Table 1 agree well with
values previously reported in the literature, as indicated in the ta-
ble. In particular, the nonmonotonic behaviour of the formation
energy as a function of the tilt angle for the GB(2,1)j(1,2),
GB(3,2)j(2,3), and GB(4,3)j(3,4) is also obtained in Ref. 38.

Our main goal is to investigate the phonon spectrum of each of
the four GB models described above. The first step is to perform
electronic structure calculations using the Quantum Espresso (QE)
code [56] based on the Density Functional Theory [57]. We use the
Rappe-Rabe-Kaxiras-Joannopoulos [58] ultrasoft pseudopotential
for the interaction of valence electrons and ion cores, and the
generalized gradient approximation, in the Perdew-Burke-
Ernzerhof parametrization [59], for the exchange correlation
functional.

A tight geometry relaxation was performed until the force on
each atom were less than or equal to 1 �10�5 Ry/a.u., the total
energy of the supercells were converged within 0.1 meV/atom, and
the pressure on the cell was lower than 0.1 kbar. Monkhorst-Pack
[60] k-point sampling of the Brillouin Zone with 12 � 12� 1, 14 �
14 � 1, 16 � 16 � 1, 18 � 18 � 1 and 30 � 30 � 1 were used for the
GB(4,3)j(3,4), GB(3,2)j(2,3), GB(2,1)j(1,2), GB(2,0)j(2,0), and pristine
graphene, respectively. From previous work involving one of the
authors of this work [49], it is established that 18 k-points along the
defect direction is enough to ensure convergence within the above
tolerances for the GB(2,0)j(2,0). The samplings for the other defects
are excessive, since these tolerances could be met with smaller
samplings, in particular in the direction perpendicular to the defect.

A plane wave energy cutoff of 60 Ry and a density cutoff of 600
Ry were found to produce well converged results needed for the
subsequent phonon spectrum calculations. In order to stimulate
Table 1
Number of atoms (Na), geometric parameters (a, TGB and d), as well as the formation e
crystallographic point group of each structure is indicated in parenthesis. Previously r
comparison. 1Ref. 14; 2Ref. 38; 3Ref. 40; 4Ref. 55.

System Na a(degree)

GB(2,0)j(2,0) (pmm) 42 0.0
GB(2,1)j(1,2) (pm) 60 21.29 (21.82)
GB(3,2)j(2,3) (pm) 120 13.30 (13.22)
GB(4,3)j(3,4) (pm) 168 9.60 (10.92)
isolated 2D sheets, and since the QE code is based on plane wave
basis sets, supercells are taken to be periodic along the graphene
plane and surrounded by a 15 Å vacuum, which is large enough to
impede interactions of the graphene layer with its periodic images.

The study of the phonon spectra was performed using the
PHONOPY code [61] where the full phonon spectrum, phonon ei-
genvectors, and the corresponding density of states can be calcu-
lated using the supercell method, also known as the frozen-phonon
approach [62,63]. Our phonon calculations are done using a com-
bination of the QE and PHONOPY codes. Self consistent calculations
to converge the structures are performed with QE, and the relaxed
structures are then fed to PHONOPY for the phonon calculations.

Since the chosen supercell size influences the convergence of
the thermal properties and given the computational limitations in
going to higher supercell dimensions, results were obtained using a
1�1 �1 supercell for GB(3,2)j(2,3) and GB(4,3)j(3,4), and a 2� 2�
1 for GB(2,0)j(2,0) and GB(2,1)j(1,2) structures. On the other hand
for pure graphene with two atoms in the unit cell, an 8 � 8 � 1
supercell was used in PHONOPY to compute the thermal properties.
3. Results and discussions

The electronic properties of the GBs examined in this paper have
been already discussed in Refs. [49,55], using the SIESTA code [64].
Since these constitute the initial step for phonon calculations, they
have been computed again using the QE code. Results similar to the
ones reported in these works were obtained: the electronic struc-
tures of the titl GBs [GB(2,1)j(1,2), GB(3,2)j(2,3), GB(4,3)j(3,4)] show
a vanishing gap and a Dirac-like nature of electronic excitations,
which are common features with pristine graphene. More inter-
estingly is the generation of an anisotropic Dirac cone at the Fermi
level, with the Dirac point on a k

!
-vector along the GB direction. In

the GB(2,0)j(2,0) case, we also obtain the strongly-localized empty
electronic states just above the Fermi level that lead to a magnetic
instability upon n-type doping, as discussed in Ref. 49.

Converged phonon dispersion relations uð q!Þ, as well as the
corresponding PhDOS of pristine graphene with two atoms in the
unit cell, along the G-M-K-G path in the IBZ, computed with a
combination of QE and PHONOPY codes are shown in Fig. (2). The
phonon dispersion relation of graphene comprises three acoustic
(A) branches and three optical (O) branches. The modes are asso-
ciated with out-of-plane (Z), in-plane longitudinal (L), and in-plane
transverse atomic motions [65e67].

As expected, the phonon dispersion relation shows two in-plane
acoustic modes with linear dispersions, and a flexural mode with
quadratic dispersion, associated with a free translation of the
monolayer along the normal direction, that is characteristic of 2D
systems. This quadratic mode triggers the intrinsic instability of
free-standing 2D materials in the thermodynamic limit [3,68].
Whether graphene should display a flexural mode with quadratic
dispersion is a matter of debate in the literature. While Castro Neto
et. al. [3] argue that such quadratic modes should appear in any 2D
system, for it is the free translation of the whole layer in free space
(hence with an energy that is quadratic in the momentum) and
nergies per unit length (Ef )of the GBs involved in this work. The two-dimensional
eported values for a, TGB , and Ef , and corresponding references, are indicated for

TGB(Å) d(Å) Ef (eV/Å)

4.90 (4.963) 22.67 0.48 (0.493)
6.54 (6.592) 12.40 0.33 (0.341, 0.322, 0.334)
10.90 (10.652) 14.70 0.41 (0.362, 0.424)
15.20 (14.832) 14.74 0.39 (0.302, 0.404)



Fig. 2. Phonon spectrum and density of states of pristine graphene with two atoms in
the unit cell along the G-M-K-G path in the Brillouin zone. The quadratic flexural mode
near the G point causes a non-zero DOS at zero frequency.
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Mariani and von Oppen [69] argue that the quadratic dispersion is a
result of rotation and reflexion symmetries, Adamyan et. al. [70]
claim that inclusion of non-linear terms render the dispersion of
the flexural mode linear, with a velocity of sound that differs from
that of the regular in-plane acoustic modes.

The linear crossings of the ZA/ZO and the LA/LO modes at the
K-point arise due to the D6h point-group symmetry of graphene.
The finite PhDOS at zero frequency, that can be observed in Fig. 2, is
due to the van Hove singularity of the flexural mode with quadratic
dispersion. It is also instructive to note that according to group
theoretical analysis [71], the lattice vibrational modes at the G point
can be decomposed as 2A

00
2 þ 2E0, where the A

00
2 modes are infrared

active and the E0 are Raman active.
For a comparison of the phonon dispersions of the poly-Gr

systems at hand with that of pristine graphene, we show in Fig. 3
the phonon dispersions of the four poly-Gr models. In each case,
given the supercell sizes involved, the number of phonon modes is
quite high and there is substantial band folding due to the small-
ness of the corresponding IBZs. The band plots however clearly
show a very distinct feature of the phonon dispersion relations of
the tilt GBs: the appearance of high-frequency flat phonon
branches (shown as red lines) in Fig. 3(b)-(d), respectively for the
GB(2,1)j(1,2), the GB(3,2)j(2,3), and the GB(4,3)j(3,4), at frequencies
above the highest phonon frequency (u �49.2 THz) we obtain in
the pristine-graphene dispersion in Fig. 2. Of importance also is the
fact that such high-frequency flat modes are absent in the phonon
dispersion of the translational boundary GB(2,0)j(2,0) in Fig. 3(a).

Further comparison between the phonon spectra of pristine
graphene and the poly-Gr systems is best pursued by comparing
the respective PhDOS. In Fig. 4, the red curves show the PhDOS for
each poly-Gr supercell, with the phonon DOS of pristine graphene
shown in black for comparison. A few general observations can be
drawn from Fig. 4. In all four cases, in the frequency interval be-
tween 0 and 5 THz, where the pristine graphene phonon DOS is
quite smooth, a DOS peak appears in the polycrystalline models at
u ¼ 3.4 THz for the GB(2,1)j(1,2), u � 4.5 THz for the GB(3,2)j(2,3),
u �4.8 THz for the GB(2,1)j(1,2), and u � 5.0 THz for the
GB(2,0)j(0,2). Note that the frequency of this peak tends to the value
of 5 THz as the tilt angle a decreases. At frequencies higher than
5 THz, the phonon spectra of the poly-Gr systems are similar to that
of the pristine system, except for the splitting of the peaks in the
intervals 16� u � 30 THz and 40� u �50 THz, an effect of de-
generacy lifting due to the lower symmetry in the polycrystalline
models. Finally, as discussed in the previous paragraph, the tilt GB
models display rather flat phonon modes at frequencies above
50 THz, as shown in Fig. 4(b)-(d).

In order to investigate in more detail the nature of the localized
modes in the tilt GBs, in Fig. 5 we show the amplitude of the atomic
displacements of the eigenmodes of the lowest of the flat phonon
branches of the tilt GBs, on the G and Y special k

!
-points of the IBZ

shown in the inset in Fig. 1(d). The higher-frequency (�48 THz)
phonon branch of the GB(2,0)j(2,0) is also shown for comparison.
We note that in the case of the tilt GBs, we have two GBs in the
supercell, hence the displacements of the atoms of the two
boundaries are independent degrees of freedom.

Fig. 5(a) shows the amplitude of atomic displacements for the
u ¼ 48 THz modes of the GB(2,0)j(2,0) [the highest-frequency
branch in the phonon spectrum of Fig. 3(a)] at the G and Y points
of the IBZ shown in Fig. 1(d). Atomic displacements are shown as a
function of the perpendicular distance of each atom (or group of
atoms) to the line going through the geometric center of the defect
core, which in the GB(2,0)j(2,0) is defined by the common side of
the two pentagons. Atoms to the right (left) of the GB are ascribed a
positive (negative) distance such that the symmetry of the mode
with respect to the GB line is displayed. The non-localized nature of
this GB(2,0)j(2,0) phonon branch is clearly displayed in Fig. 5, with
sizeable displacements of all atoms in the supercell for the two
modes depicted in the figure.

In the case of the tilt GBs, the geometric center of the defect
(with respect towhich distances aremeasured) is themedian of the
pentagon-heptagon pair, going through the nadir of the hexagon
and the apex of the pentagon. By zooming in on the interval of
frequencies above 50 THz in the GB(2,1)j(1,2) phonon dispersion in
Fig. 3(b), it can be observed that each one of the two high-frequency
flat modes consists of a pair of nearly degenerate non-dispersive
phonon branches, one pair at �50.1 THz with a splitting of
�0.1 THz between them, and another at �50.6 THz, also with a
�0.1 THz splitting. The reason for the small splittings is that the
supercells for the tilt GBs have an inversion center that is slightly
broken, numerically, because we did not enforce the inversion
center in the calculation. Similar considerations apply for the set of
three flat modes of the GB(3,2)j(2,3) and the GB(4,3)j(3,4) in
Fig. 3(c) and (d).

Fig. 5(b) displays the amplitude of atomic displacements for the
u �50.1 THz modes of the GB(2,1)j(1,2), at the G and Y points of the
IBZ. This is the lowest of the two flat phonon branches in the
phonon dispersion for this defect in Fig. 3(b). Given the degeneracy,
the two modes can be chosen as non-inversion-symmetric com-
binations of the inversion-symmetric modes. The non symmetric
modes are inversion images of each other, localized on either one of
the two GBs in the cell. The localized nature of this mode is clear in
the figure, with high amplitudes of atomic motion for atoms near
the defect, and a fast decay of the amplitudes as we move into the
bulk region of the supercell.

Fig. 5(c) and (d) show the lowest-frequency flat phonon
branches for the GB(3,2)j(2,3) (u �51.6 THz) and the GB(4,3)j(3,4)
(u �52.2 THz), respectively. Again, strong localization of these non-
dispersive phonon branches on the GB region is clearly displayed in
Fig. 5(c) and (d), with high values of atomic displacements for
atoms near the GB and a fast decay as wemove into the bulk region
of the supercells. The apparent ressurgance of the modes starting at
a distance of �12 Å from the center of the GB is due to the fact that
in this region the neighborhood of the other GB in the supercell is
reached.

Let us discuss now the impact of such localized modes on
phononic transport in polycrystalline graphene. Phonon transport
is determined, among other factors, by the group velocity vg of the
phonon modes. In Fig. 6(a) and (b) we show the profile of group-
velocity values for pristine graphene and for the GB(2,1)j(1,2)
boundary, respectively. The figures clearly show a strong overall
tendency of lower group velocities in the polycrystalline model,
with a much higher concentration of modes with vg � 8 km/s than
in the pristine case. Moreover, we observe a marked increase in the



Fig. 3. Phonon dispersion relations for polycrystalline models of graphene. (a) GB(2,0)j(2,0); (b) GB(2,1)j(1,2); (c) GB(3,2)j(2,3); (d) GB(4,3)j(3,4). High-frequency flat modes appear
as red horizontal lines. (A colour version of this figure can be viewed online.)
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number of modes with null group velocity, signaling the emergence
of non-dispersive modes in the polycrystalline model, not only in
the high-frequency range of the aforementioned localized modes,
but also over the entire interval of phonon frequencies in Fig. 6(b).
To be more quantitative, the red bars in the two panels in Fig. 6
show the average group velocity for the two systems. The average
velocity for pristine graphene (7.25 km/s) is about twice as large as
the average value for the GB(2,1)j(1,2) boundary (3.57 km/s).
Furthermore, for the GB(2,1)j(1,2) 74.8% of the modes we computed
have vg � 5:0 km/s and 11.4% have vg � 0:5 km/s, while for pristine
graphene the corresponding fractions are 36.4% and 1.2%. The
patterns of group velocities for the other tilt boundaries in our
study (not shown in Fig. 6) are very similar, with an increase in the
number of null-velocity modes and an overall downward shift in
the distribution of group velocity values.

Another parameter that impacts the transport of phonons and
electrons in materials is the scattering of these excitations by
localized phonon modes, because localized modes tend to locally
enhance the electron-phonon coupling and the anharmonic effects
that lead to strong phonon-phonon scattering. Hence, the emer-
gence of localized modes in the polycrystalline models in our study
is bound to reduce the phonon lifetimes and, along with the
reduction of group velocities, this feature should also strongly
impact transport properties.

Indeed, previous experimental and theoretical studies have
shown a reduction in the lattice thermal conductivity k in
polycrystalline graphene compared to pristine graphene, and that
the values of k correlate with the GB tilt angle a, with a tendency of
increasing values of k as a decreases [23]. In order to correlate these
trends with our results, we recall that the lattice thermal conduc-
tivity tensor, as implemented in the PHONO3PY code [72], is given
by

kab ¼ 1
NV0

X

q!;s

cvð q!; sÞvað q!; sÞvbð q!; sÞtð q!; sÞ (1)

where cvð q!;sÞ, vaðbÞð q!;sÞ, and tð q!; sÞ are, respectively, the specific
heat, the group velocity, and the phonon lifetime for the ( q!; s)
phonon mode. In the above equation, the sum is over all wave-
vectors q and their branch indices s, and N, V0 and tð q!; sÞ represent,
respectively, the total number of sampling points, the volume of the
unit cell and the phonon lifetime for the mode ( q!;s), and aðbÞ ¼ fx;
yg, since the structures are two dimensional.

We have already discussed the reduction of group velocities in
the poly-Gr models. Fig. 7 shows the specific heat (integrated over
the Brillouin zone) computed for pristine graphene and for each
poly-Gr system in our study, for six different temperatures. At room
temperature, we obtain cv � 0:71J/(K.g) for pristine graphene,
which is in agreement with previously reported values in the
literature [73]. For all temperatures, cv values for the poly-Gr
models differ from those of graphene by �10% or less. At room



Fig. 4. Red curves show the phonon density of states (PhDOS) for polycrystalline models of graphene. (a)GB(2,0)j(2,0); (b) GB(2,1)j(1,2); (c) GB(3,2)j(2,3); (d) GB(4,3)j(3,4). Black
curves show PhDOS for pristine graphene, for comparison. (A colour version of this figure can be viewed online.)

Fig. 5. Mass-normalized amplitudes of atomic displacements corresponding to the high-frequency flat modes (red curves in Fig. 3) of polycrystalline graphene. Displacements are
plotted, for the four high-symmetry points in the IBZ [inset in Fig. 1(d)], as a function of the distance to the center of the grain boundary. Localized nature of the flat modes for the
tilt GBs is clearly displayed. (a) GB(2,0)j(2,0); (b) GB(2,1)j(1,2); (c) GB(3,2)j(2,3); GB(4,3)j(3,4). (A colour version of this figure can be viewed online.)
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temperature, cv results for the poly-Gr systems are only �3e4%
larger than the pristine graphene value, and should have a minor
impact in the values of k for these systems.
Another factor in the above equation for k is the phonon life-
time, that cannot be obtained from a ground-state calculation as in
the present study. Nevertheless, a closer inspection of the pattern of



Fig. 6. Distribution of phonon group velocities for (a) pristine graphene and (b) the
GB(2,1)jGB(1,2) model for polycrystalline graphene. Red horizontal bars indicate the
value of the average group velocity for each distribution. (A colour version of this figure
can be viewed online.)

0 200 400 600 800 1000 1200
Temperature (K)

0

0.5

1.0

1.5

2.0

Sp
ec

ifi
c 

he
at

 [J
 / 

(g
 K

)]

pristine graphene
GB(2,0)|(2,0)
GB(2,1)|(1,2)

Fig. 7. Specific heat capacity at constant volume cv , as a function of temperature, for
pristine graphene and for the polycrystalline models, in units of J/(K.g). (A colour
version of this figure can be viewed online.)

Fig. 8. Pattern of atomic displacements, in the neighborhood of the grain-boundary
core, for the high-frequency flat phonon modes in polycrystalline graphene. (a)
GB(2,1)j(1,2); (b) GB(3,2)j(2,3); and GB(4,3)j(3,4). In each panel, the inset show atoms
at and near the grain-boundary core, color-coded according to the range of atomic
displacements indicated in the figure: black symbols show atoms with high-values of
the displacement amplitude; blue symbols show atoms with medium-to-high ampli-
tudes; green symbols show atoms with medium-to-low displacements; and turquoise-
blue symbols show atoms with low values of atomic displacements. (A colour version
of this figure can be viewed online.)

W.A. Diery et al. / Carbon 140 (2018) 250e258256
amplitudes of the atomic displacements of the localized modes, in
the neighborhood of the grain boundaries, provides information
that allows us to form a qualitative picture of the aforementioned
experimental trends of k as a function of a.

For this, in Fig. 8 we plot the amplitude of atomic displacements
in the GB core and its immediate neighborhood, for the lowest of
the flat modes of the tilt GBs in Fig. 3, at the G and Y points of the
IBZ. In each case, we show the amplitude for atoms at the core and
its neighborhood as a function of the distance to the geometric
center of the core. Displacement values are divided in four intervals,
with the following color coding: black squares and circles, show
high amplitude atoms, blue symbols show medium-to-high
amplitude atoms, green symbols show medium-to-low
displacement atoms, while low displacement atoms are shown as
turquoise symbols. In each case, the inset shows the atoms at the
core of the defect and its immediate neighborhood. Atoms in the
inset are color coded according to the symbols in the plot, to show
the corresponding displacement amplitudes.

A first general observation is that magnitudes of atomic dis-
placements in these flat modes decrease with increasing a, and we
should expect a decrease in phonon scattering by the GBs as a in-
creases, in line with the aforementioned experimental trends.
Furthermore, we note that in these tilt GBs large atomic displace-
ments are concentrated on the region of the vertex of the pentagon
that is opposite to the heptagon. This is consistent with the fact that
the pentagon is the compression side of the edge dislocation (an
isolated pentagon-heptagon pair is an edge dislocation in gra-
phene), with smaller bond lengths and hence with stiffer bonds, as
found in Ref. 74. The bottom of the heptagon is the tension side of
the dislocation, and we observe smaller displacements in this
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region.
Note that in the tilt GBs with larger angles [GB(3,2)j(2,3) and

GB(4,3)j(3,4)] this low-displacement region extends to the lines of
hexagons between the dislocations along the core of the defect. The
pristine-like morphology of these portions of the core imply that
these are low-phonon-scattering regions. Hence, within the
structural model of tilt grain boundaries we adopt, the low-
scattering regions in the core of the defect increase with
increasing a, and we should expect that phonon-scattering by the
GB core should decrease with increasing a. These observations are
fully consistent with the experimental findings observed in Ref. 23.

4. Conclusion and discussion

In this work, we report an investigation of the phonon spectrum
of polycrystalline models of graphene, by means of ab-initio cal-
culations of their phonon dispersion and of the associated phonon
modes. We consider four different models of polycrystalline gra-
phene. One with lattices of adjacent grains translated relative to
each other, connected by a translational grain boundary that shows
fused topological defects (fivefold and eightfold rings). The other
three models have the lattices of adjacent grains misoriented
relative to each other, connected by symmetric tilt grain boundaries
that show lines of prisitine-like hexagons separating the fivefod
and sevenfold rings along the core.

We find that tilt grain boundaries introduce high-frequency
non-dispersive phonon modes in the phonon spectrum of poly-
crystalline graphene, and that these modes are strongly localized
on the core of the grain boundaries. No such high-frequency
localized modes are found in the case of the translational-
boundary system, where no tilt occurs between the grains. We
compute the phonon group velocities and specific heats (at six
different temperatures) of each system in our study, and find that
while specific heats of the polycrystalline systems are quite similar
to that of graphene, the distribution of group velocities is very
different, with an overall tendency of lower group-velocity values
and an increase in the number of modes with null group velocities
in the polycrystalline systems, when compared to pristine
graphene.

By analysing in detail the patterns of atomic displacements of
the high-frequency localized modes in the polycrystalline systems,
we propose a consistent interpretation for the experimentally
observed trends of increasing values of the lattice thermal con-
ductivity of polycrystalline graphene samples as the tilt angle de-
creases. In our analysis, we propose that the increase in the
pristine-like, low-scattering regions, in the core of the grain
boundaries, as the tilt angle decreases, explains the experimentally
observed trends for the thermal conductivity of the polycrystalline
samples.

Our present analysis is limited to the symmetric titl grain-
boundary models we address, and the only model we consider in
the presentwork that has fused topological defects does not display
the localized modes that we find in the symmetric tilt boundaries.
We are currently undertaking calculations of non-symmetric tilt
grain boundaries that present fused topological defects in their
core, with no pristine-like hexagons separating the topological
defects, in order to find out to which extent we can generalize the
correlations between the occurrence of localized phonon modes
(and their respective patterns of atomic displacements) and the
grain-boundary morphology and tilt angle in polycrystalline
graphene.

Acknowledgments

The simulations in this work were performed at King Abdulaziz
University's High Performance Computing Center (Aziz HPCC)
(http://hpc.kau.edu.sa). R. W. Nunes acknowledges support from
Brazilian agencies CNPq, FAPEMIG (Edital-Universal grants: APQ-
02290-14 and APQ-03312-17), and INCT de Nanomateriais de
Carbono.

Appendix A. Supplementary data

Supplementary data related to this article can be found at
https://doi.org/10.1016/j.carbon.2018.08.045.

References

[1] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183.
[2] M.I. Katsnelson, Graphene:carbon in two dimensions, Mater. Today 10 (2007)

20.
[3] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The

electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109.
[4] K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene

nanoribbons: nanometer size effect and edge shape dependence, Phys. Rev. B
54 (1996) 17954.

[5] P.R. Wallace, The band theory of graphite, Phys. Rev. 71 (1947) 622.
[6] L.R. Radovic, B. Bockrath, On the chemical nature of graphene edges:origin of

stability and potential for magnetism in carbon materials, J. Am. Chem. Soc.
127 (2005), 59175927.

[8] I. Zsoldos, Effects of topological defects on graphene geometry and stability,
Nanotechnol. Sci. App. 3 (2010) 101e106.

[9] J. Da Silva-Araújo, H. Chacham, R.W. Nunes, Gap opening in topological-defect
lattices in graphene, Phys. Rev. B 81 (2010) 193405.

[10] P.T. Araujo, M. Terrones, M.S. Dresselhaus, Defects and impurities in
graphene-like materials, Mater. Today 15 (2012) 98e109.

[11] Y.N. Xu, D. Zhan, L. Liu, H. Suo, Z.H. Ni, T.T. Nguyen, et al., Thermal dynamics of
graphene investigated by polarized Raman spectroscopy, ACS Nano 3 (2009)
569e574.

[12] J.P. Hirth, J. Lothe, Theory of Dislocations. Institute of Physics. Oslo University,
McGraw-Hill Book Company, New York, 1972.

[13] D.R. Nelson, Defects and Geometry in Condensed Matter Physics, Cambridge
Univ. Press, Cambridge, 2002.

[14] O.V. Yazyev, S.G. Louie, Topological defects in graphene: dislocations and
grain boundaries, Phys. Rev. B 81 (2010) 195420.

[15] S.L. Sass, Grain Boundaries, McGraw-Hill Education, AccessScience, 2014.
[16] Y. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene

and related applications, Acc. Chem. Res. 46 (2013) 23292339.
[17] J. �Cervenka, C.F.J. Flipse, The role of defects on the electronic structure of a

graphite surface, Phys.: Conf. Ser. 61 (2007) 190.
[18] J. �Cervenka, M. Katsnelson, C.F.J. Flipse, Room-temperature ferromagnetism in

graphite driven by two-dimensio al networks of point defects, Nat. Phys. 5
(2009) 840e844.

[19] S. Iijima, T. Wakabayashi, Y.J. Achiba, Structures of carbon soot prepared by
laser ablation, Phys. Chem. 100 (1996) 5839e5843.

[20] J.-O. Müller, D.S. Su, R.E. Jentoft, T.J. Krhner, F.C. Jentoft, R. Schlgl, Morphology-
controlled reactivity of carbonaceous materials towards oxidation, Catal.
Today 102 (2005) 259e265.

[21] M. Terrones, G. Terrones, H. Terrones, Structure, chirality and formation of
giant icosahedral fullerenes and spherical graphitic onions, Struct. Chem. 13
(2002) 373e384.

[22] J.C. Charlier, Defects in carbon nanotubes, Acc. Chem. Res. 35 (2002) 1063.
[23] P. Yasaei, A. Fathizadeh, R. Hantehzadeh, A.K. Majee, A. El-Ghandour,

D. Estrada, et al., Bimodal phonon scattering in graphene grain boundaries,
Nano Lett. 15 (2015), 45324540.

[24] R. Grantab, V.B. Shenoy, R.S. Ruoff, Anomalous strength characteristics of tilt
grain boundaries in graphene, Science 330 (2010) 946.

[25] P. Yasaei, B. Kumar, R. Hantehzadeh, M. Kayyalha, A. Baskin, N. Repnin, et al.,
Chemical sensing with switchable transport channels in graphene grain
boundaries, Nat. Commun. 5 (2014) 4911.

[26] P.Y. Huang, C.S. Ruiz-Vargas, V.M. van der Zande, W.S. Whitney,
M.P. Levendorf, J.W. Kevek, et al., Grains and grain boundaries in single-layer
graphene atomic patchwork quilts, Nature 469 (2011) 389e392.

[27] K. Kim, Z. Lee, W. Regan, C. Kisielowski, M. Crommie, A. Zettl, Grain boundary
mapping in polycrystalline graphene, ACS Nano 5 (2011) 2142.

[28] H.I. Rasool, C. Ophus, Z. Zhang, M.F. Crommie, B.I. Yakobson, A. Zettl,
Conserved atomic bonding sequences and strain organization of graphene
grain boundaries, Nano Lett. 14 (2015) 7057e7063.

[29] C. Ophus, A. Shekhawat, H. Rasool, A. Zettl, Large-scale experimental and
theoretical study of graphene grain boundary structures, Phys. Rev. B 92
(2015) 205402.

[30] P. Simonis, C. Goffaux, P.A. Thiry, L.P. Biro, Ph Lambin, V. Meunier, STM study
of a grain boundary in graphite, Surf. Sci. 511 (2002) 319e322.

[31] J. Lahiri, Y. Lin, P. Bozkurt, Oleynik II, M. Batzill, An extended defect in gra-
phene as a metallic wire, Nat. Nanotech. 5 (2010) 326e329.

[32] J.B. Oliveira, I.S. Santos de Oliveira, J.E. Padilha, R.H. Miwa, Tunable magnetism



W.A. Diery et al. / Carbon 140 (2018) 250e258258
and spin-polarized electronic transport in graphene mediated by molecular
functionalization of extended defects, Phys. Rev. B 97 (2018) 045107.

[33] W.H. Brito, R. Kagimura, R.H. Miwa, B and N doping in graphene ruled by grain
boundary defects, Phys. Rev. B 85 (2012), 035404.

[34] S. Malola, H. H€akkinen, P. Koskinen, Structural, chemical, and dynamical
trends in graphene grain boundaries, Phys. Rev. B 81 (2010) 165447.

[35] E. Cockayne, G.M. Rutter, N.P. Guisinger, J.N. Crain, P.N. First, J.A. Stroscio.
Grain boundary loops in graphene. Phys. Rev. B (83) 195425.

[36] J.M. Carlsson, L.M. Ghiringhelli, A. Fasolino, Theory and hierarchical calcula-
tions of the structure and energetics of [0001] tilt grain boundaries in gra-
phene, Phys. Rev. B 84 (2011) 165423.

[37] L. Yi, Z. Yin, Y. Zhang, T. Chang, A theoretical evaluation of the temperature
and strain-rate dependent fracture strength of tilt grain boundaries in gra-
phene, Carbon 51 (2013) 373.

[38] J. Zhang, J. Zhao, J. Lu, Intrinsic strength and failure behaviors of graphene
grain boundaries, ACS Nano 6 (2012) 2704.

[39] Q.Q. Dai, Y.F. Zhu, Q. Jiang, Electronic and magnetic properties of armchair
graphene nanoribbons with 558 grain boundary, Phys. Chem. Chem. Phys. 16
(2014) 10607.

[40] J. Sun, N. Lin, Z. Li, H. Ren, C. Tanga, X. Zhao, Electronic and transport prop-
erties of graphene with grain boundaries, RSC Adv. 6 (2016) 1090.

[41] P. Vancs�o, G.I. M�ark, P. Lambin, A. Mayer, C. Hwang, L.P. Bir�o, Effect of the
disorder in graphene grain boundaries: a wave packet dynamics study, Appl.
Surf. Sci. 291 (2014) 58e63.

[42] Z. Song, V.I. Artyukhov, B.I. Yakobson, Z. Xu, Pseudo HallPetch strength
reduction in polycrystalline graphene, Nano Lett. 13 (2013) 1829e1833.

[43] F. Hao, D. Fang, Mechanical deformation and fracture mode of polycrystalline
graphene: atomistic simulations, Phys. Lett. 376 (2012) 1942.

[44] J. Kotakoski, J.C. Meyer, Mechanical properties of polycrystalline graphene
based on a realistic atomistic model, Phys. Rev. B 85 (2012) 195447.

[45] T.R. Albrecht, H.A. Mizes, J. Nogami, S-i Park, C.F. Quate, Observation of tilt
boundaries in graphite by scanning tunneling microscopy and associated
multiple tip effects, Appl. Phys. Lett. 52 (1988) 362.

[46] C. Kimmer, S. Aubrey, A. Skye, P.K. Schelling, Scattering of phonons from a
high-energy grain boundary in silicon: dependence on angle of incidence,
Phys. Rev. B 75 (2007) 144105.

[47] P. Schelling, S.R. Phillpot, P. Keblinski, Kapitza conductance and phonon
scattering at grain boundaries by simulation, J. Appl. Phys. 95 (2004)
6082e6091.

[48] H.-S. Kim, S.D. Kang, Y. Tang, R. Hanus, G.J. Snyder, Dislocation strain as the
mechanism of phonon scattering at grain boundaries, Mater. Horiz. 3 (2016)
234e240.

[49] S.S. Alexandre, A.D. Lúcio, A.H. Castro Neto, R.W. Nunes, Correlated magnetic
states in extended one-dimensional defects in graphene, Nano Lett. 12 (2012),
509-5102.

[50] S.S. Alexandre, R.W. Nunes, Magnetic states of linear defects in graphene
monolayers: effects of strain and interaction, Phys. Rev. B 96 (2017), 075445.

[51] L.C. Gomes, S.S. Alexandre, H. Chacham, R.W. Nunes, Stability of edges and
extended defects on boron nitride and graphene monolayers: the role of
chemical environment, J. Phys. Chem. C 117 (2013) 11770e11779.

[52] A.J.M. Nascimento, R.W. Nunes, Lubrication of Stone-Wales transformations in
graphene by hydrogen and hydroxyl functional groups, Nanotechnology 24
(2013) 435707.
[53] J. da Silva-Araújo, A.J.M. Nascimento, H. Chacham, R.W. Nunes, Non-hexago-
nal-ring defects and structures induced by healing and strain in graphene and
functionalized graphene, Nanotechnology 24 (2013) 035708.

[54] A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Direct evidence for
atomic defects in graphene layers, Nature (London) 430 (2004) 870.

[55] J. da Silva Araújo, R.W. Nunes, Complex evolution of the electronic structure
from polycrystalline to monocrystalline graphene: generation of a new Dirac
point, Phys. Rev. B 81 (2010) 073408.

[56] P. Giannozzi, S. Baroni, N. Bonini, N. Calandra, R. Car, C. Cavazzoni, et al.,
QUANTUM ESPRESSO: a modular and open-source software project for
quantum simulations of materials, J. Phys. Condens. Matter 21 (2009) 395502.

[57] G. Kresse, Furthmüller, Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set, J. Phys. Rev. B 54 (1996) 11169.

[58] A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos, Optimized pseudopo-
tentials, Phys. Rev. B 41 (1990) 1227.

[59] J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made
simple, Phys. Rev. Lett. 77 (1996) 3865.

[60] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys.
Rev. B 13 (1976) 5188.

[61] A. Togo, F. Oba, I. Tanaka, First-principles calculations of the ferroelastic
transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys.
Rev. B 78 (2008) 134106.

[62] A. van de Walle, M. Asta, G. Ceder, The alloy theoretic automated toolkit: a
user guide, J. Calphad. 26 (2002) 539553.

[63] K. Parli�nski, Z.Q. Li, Y. Kawazoe, First-Principles determination of the soft
mode in cubic ZrO2, Phys. Rev. Lett. 78 (1997), 40634066.

[64] J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-
Portal, The SIESTA method for ab initio order-N materials simulation, J. Phys.
Condens. Matter 14 (2002) 2745.

[65] R. Saito, G. Dresselhaus, M. Dresselhaus, Physical Properties of Carbon
Nanotubes, Imperial College Press, London, 1998.

[66] O. Dubay, G. Kresse, Accurate density functional calculations for the phonon
dispersion relations of graphite layer and carbon nanotubes, Phys. Rev. B 67
(2003), 035401.

[67] L. Wirtz, A. Rubio, The phonon dispersion of graphite revisited, Solid State
Commun. 131 (2004) 141e152.

[68] N.D. Mermin, H. Wagner, Absence of ferromagnetism or antiferromagnetism
in one- or two-dimensional isotropic heisenberg models, Phys. Rev. Lett. 17
(1966) 1133.

[69] Mariani, F. Von Oppen, Flexural phonons in free-standing graphene, Phys. Rev.
Lett. 100 (2008), 076801.

[70] V. Adamyan, V. Zavalniuk, Lattice thermal conductivity of graphene with
conventionally isotopic defects, J. Phys. Condens. Matter 24 (2012) 415401.

[71] X. Zhang, X.F. Qiao, W. Shi, J.B. Wu, D.S. Jiang, P.H. Tan, Phonon and Raman
scattering of two-dimensional transition metal dichalcogenides from mono-
layer, multilayer to bulk material, Chem. Soc. Rev. 44 (2015) 2757e2785.

[72] A. Togo, L. Chaput, I. Tanaka, Distributions of phonon lifetimes in Brillouin
zones, Phys. Rev. B 91 (2015), 094306.

[73] S. Mann, P. Rani, R. Kumar, G.S. Dubeyc, V.K. Jindal, Thermodynamic proper-
ties of pure and doped (B, N) graphene, RSC Adv. 6 (2016) 12158e12168.

[74] A. Mackiewicz, T. Bark, B. Cao, J.A. Delaire, D. Riehl, W.L. Ling, S. Foillard,
E. Doris, Fullerene-functionalized carbon nanotubes as improved optical
limiting devices, Carbon 49 (2011) 3998e4003.


